skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "MÜNCHOW, ANDREAS"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Increasing ocean and air temperatures have contributed to the removal of floating ice shelves from several Greenland outlet glaciers; however, the specific contribution of these external forcings remains poorly understood. Here we use atmospheric, oceanographic and glaciological time series data from the ice shelf of Petermann Gletscher, NW Greenland to quantify the forcing of the ocean and atmosphere on the ice shelf at a site ~16 km from the grounding line within a large sub-ice-shelf channel. Basal melt rates here indicate a strong seasonality, rising from a winter mean of 2 m a −1 to a maximum of 80 m a −1 during the summer melt season. This increase in basal melt rates confirms the direct link between summer atmospheric warming around Greenland and enhanced ocean-forced melting of its remaining ice shelves. We attribute this enhanced melting to increased discharge of subglacial runoff into the ocean at the grounding line, which strengthens under-ice currents and drives a greater ocean heat flux toward the ice base. 
    more » « less
  2. Abstract A set of collocated, in situ oceanographic and glaciological measurements from Petermann Gletscher Ice Shelf, Greenland, provides insights into the dynamics of under‐ice flow driving basal melting. At a site 16 km seaward of the grounding line within a longitudinal basal channel, two conductivity‐temperature (CT) sensors beneath the ice base and a phase‐sensitive radar on the ice surface were used to monitor the coupled ice shelf‐ocean system. A 6 month time series spanning 23 August 2015 to 12 February 2016 exhibited two distinct periods of ice‐ocean interactions. Between August and December, radar‐derived basal melt rates featured fortnightly peaks of∼15 m yr−1which preceded the arrival of cold and fresh pulses in the ocean that had high concentrations of subglacial runoff and glacial meltwater. Estimated current speeds reached 0.20 – 0.40 m s−1during these pulses, consistent with a strengthened meltwater plume from freshwater enrichment. Such signals did not occur between December and February, when ice‐ocean interactions instead varied at principal diurnal and semidiurnal tidal frequencies, and lower melt rates and current speeds prevailed. A combination of estimated current speeds and meltwater concentrations from the two CT sensors yields estimates of subglacial runoff and glacial meltwater volume fluxes that vary between 10 and 80 m3 s−1during the ocean pulses. Area‐average upstream ice shelf melt rates from these fluxes are up to 170 m yr−1, revealing that these strengthened plumes had already driven their most intense melting before arriving at the study site. 
    more » « less
  3. Abstract A rapid, high‐resolution shipboard survey, using a combination of lowered and expendable hydrographic measurements and vessel‐mounted acoustic Doppler current profiler data, provided a unique three‐dimensional view of an Arctic anti‐cyclonic cold‐core eddy. The eddy was situated 50‐km seaward of the Chukchi Sea shelfbreak over the 1,000 m isobath, embedded in the offshore side of the Chukchi slope current. The eddy core, centered near 150‐m depth, consisted of newly ventilated Pacific winter water which was high in nitrate and dissolved oxygen. Its fluorescence signal was due to phaeopigments rather than chlorophyll, indicating that photosynthesis was no longer active, consistent with an eddy age on the order of months. Subtracting out the slope current signal demonstrated that the eddy velocity field was symmetrical with a peak azimuthal speed of order 10 cm s−1. Its Rossby number was ~0.4, consistent with the fact that the measured cyclogeostrophic velocity was dominated by the geostrophic component. Different scenarios are discussed regarding how the eddy became embedded in the slope current, and what the associated ramifications are with respect to eddy spin‐down and ventilation of the Canada Basin halocline. 
    more » « less